
EIDR:	ID	FORMAT	

Ver.	1.1	

	

August	19,	2013	

	

	

	

	

	

	 	

	

	

	

	

	
	 	

	

Copyright	©	by	the	Entertainment	ID	Registry	Association	

EIDR:	ID	Format.	

The	content	of	this	manual	is	furnished	for	information	use	only	and	is	subject	to	

change	without	notice	and	should	not	be	construed	as	a	commitment	by	the	

Entertainment	ID	Registry	Association.	The	Entertainment	ID	Registry	Association	

assumes	no	responsibility	or	liability	for	any	errors	or	inaccuracies	that	may	appear	

in	this	document.	

Products	and	company	names	mentioned	may	be	trademarks	of	their	respective	

owners.	

Feedback	on	this	document	can	be	sent	to	support@eidr.org	

	

	

TABLE	OF	CONTENTS	

1	 CANONICAL FORM ... 4	

1.1 Standards References .. 4

1.2 Representation .. 4

2 STANDARD ALTERNATE REPRESENTATIONS ... 5

2.1 Binary .. 6
2.1.1 Compact Binary .. 6
2.1.2 Full Binary ... 6
2.1.3 Other Binary ... 6

2.2 Canonical, no hyphens .. 6

2.3 Short DOI .. 6

2.4 URN ... 7
2.4.1 DOI Standard URN ... 7
2.4.2 Escaped URN .. 7

2.5 URI .. 8

3 POTENTIALLY LOSSY REPRESENTATIONS .. 8

3.1 Classes of Potentially Lossy Representations .. 9
3.1.1 Non-standard Binary .. 9
3.1.2 Non-standard URN .. 9

3.2 Current Uses .. 10
3.2.1 EIDR-S ... 10
3.2.2 EIDR-X ... 10

4 SIZE SUMMARY ... 11

 4

1 Canonical Form

1.1 Standards References

The DOI syntax is a NISO standard. See the DOI Handbook, Appendix 1, ANSI/NISO Z39.84-

2000 Syntax for the Digital Object Identifier.

The DOI System is an ISO Standard, ISO 26324. The DOI Handbook -

http://www.doi.org/doi_handbook/TOC.html -- and DOI Factsheet --

http://www.doi.org/factsheets/DOIIdentifierSpecs.html -- have useful background and

information for users of DOI-based identifiers.

EIDR IDs are fully compliant with the NISO and ISO specifications.

If new standard representations of a DOI are developed, they will be included in future

versions of this document.

New in Version 1.1

• New DOI URN Format

• New preferred name for the DOI proxy

• EIDR-S

• EIDR-X

1.2 Representation

This is the only representation that can properly be called a DOI or an EIDR ID. The

canonical form of an EIDR ID is:

10.5240/XXXX-XXXX-XXXX-XXXX-XXXX-C

Standard nomenclature is:

• 10.5240 is the DOI prefix for an EIDR asset record (“prefix” for short.) The “10”

indicates that this handle is a DOI.

• 5240 is the sub-prefix. It tells the DOI system which Registry is responsible for the

ID. A Registry is usually responsible for multiple sub-prefixes.

• XXXX-XXXX-XXXX-XXXX-XXXX-C is the DOI suffix (“suffix” for short.) This is

what the individual Registry uses to find the metadata associated with the ID.

For the suffix:

• X is a hexadecimal digit

• C is the ISO 7064 Mod 37,36 check character. The check is computed as Mod 37,36

rather than Mod 17,16 to allow for future extension of the ID format.

 5

• The check character is computed only over the DOI suffix. It does not include the

prefix because if the prefix is wrong, it is highly probable that the DOI will go to an

incorrect resolution system anyway. The EIDR registry separately validates the

prefix of any DOI sent through its API.

Normalization:

• EIDR IDs are normalized to upper case on input and output from the Registry.

• The DOI proxy accepts resolution requests for mixed-case EIDR IDs.

• NOTE: Contrary to the EIDR Technical Overview, the hyphens in the ID are required

in current versions of the Registry.

2 Standard Alternate Representations

Even though the Registry and DOI Proxy do not accept other forms of the ID (with the

exception of the DOI Standard URN form for the Proxy, vide infra) it is sometimes necessary

or convenient to present the ID in a more compact representation. There are three

requirements for alternate forms:

• They do not lose any information. Information that can be regenerated without loss

is:

o The “10.”, since DOI handles always start with “10.”

o The “/”, as long as you know where to put it.

o The “-” characters, as long as you know where to put them in the suffix.

o The checksum, which can be recomputed.

Information that cannot be regenerated is:

o The sub-prefix. EIDR already uses 4 sub-prefixes (one each for assets, parties,

users, and video services and networks) and may in the future allocate others

for the same or different purposes. We expect the number of sub-prefixes for

assets to be small, but applications must not assume that there will always be

just 1. It is not safe to jettison the sub-prefix, but it is safe to map it down to a

handful of bits.

o The suffix (excluding the checksum).

• All the systems that exchange a particular non-canonical form of an EIDR ID agree

on and recognize the format.

• All systems convert the non-canonical form of the ID to the canonical form when

communicating with systems that are not “in the know” (such as the Registry itself,

or other third party and DOI-based applications).

 6

The remainder of this section covers some standard alternate representations of an EIDR

ID. Other lossless formats that are commonly used or are required for using EIDR within

other standards will be added as they emerge.

2.1 Binary

2.1.1 Compact Binary

This is for use in systems where space is at a premium, and takes 96 bits:

• 16-bit sub-prefix: Interpret the sub-prefix as a number, and convert it to binary.

• 80 bits: The suffix, without the checksum, represented as 20 nibbles/10 bytes.

Converting this to the canonical representation entails:

• Starting with the string “10.”

• Appending the decimal representation of the value of the first 16 bits.

• Appending a “/”.

• Appending the value of each nibble as a hex digit, adding a “-” after every fourth digit.

• Computing the check digit and appending it to the string.

2.1.2 Full Binary

This is larger than Compact Binary, but still smaller than the full representation:

• 8 char prefix “10.5240/”.

• 80 bit binary representation of the suffix (minus checksum).

• 8-bit ASCII representation of the check character.

The conversion to canonical form is simpler than for compact binary, and is left as an

exercise for the reader.

2.1.3 Other Binary

The attentive reader will also note that there are several possible gradations between the

compact binary and full binary representations; one example is leaving off the “10.” and the

check character, leaving just the sub-prefix and the suffix excluding the check digit.

2.2 Canonical, no hyphens

This is the canonical form with all the hyphens removed, which saves 5 bytes.

2.3 Short DOI

The International DOI Foundation provides the shortDOI service, which generates a very

compact representation of a DOI. You can think of it as tinyurl for DOIs. The original DOI is

mapped into a string of three or more characters, taken from this 27-character set:

bcdfghjkmnpqrstvwxz23456789

 7

The size of the character set means that each character of a shortDOI needs 5 bits to encode.

7 such characters will support 10+ billion IDs1. 35 bits is an awkward number2, but even

encoding each one as a full byte only takes 56 bits. To be even more future-proof, an

application should plan for up to 8 characters in a shortDOI.

Instructions for manual and automated use of the service are available at shortdoi.org. For

example, if you enter 10.5240/5FD4-FEE1-22F5-583E-FECC-O, you get back 10/f77, which

can be resolved with these:

• http://doi.org/f77

• http://doi.org/10/f77

Both of these take the usual DOI proxy resolution flags3 as described in the EIDR API

Overview, e.g. http://doi.org/10/f77?locatt=type:Simple

Although the shortDOI is even shorter than the compact binary representation, it requires

calling an external system to reconstitute the shortDOI as a canonical EIDR ID.

2.4 URN

Many systems like to use URNs as IDs. EIDR IDs have a / in them, which is not a legal

character in a URN. There are two lossless ways of dealing with this.

2.4.1 DOI Standard URN

The URN-compatible form of a DOI replaces the “/” with a “:”, which results in

urn:doi:10.sub-prefix:suffix.4 An example using an EIDR ID is:

urn:doi:10.5240:F5FD4-FEE1-22F5-583E-FECC-O

The DOI Proxy accepts this form for resolutions5, e.g.

http://doi.org/urn:doi:10.5240:F5FD4-FEE1-22F5-583E-FECC-O

Recall that the EIDR API only accepts the canonical form of the ID, not the URN form.

2.4.2 Escaped URN

A generic way of handling the problem is to escape the / in the EIDR ID as %2F, so an EIDR

ID represented as a URN might look like:

urn:schemename:eidr:10.5240%2F5FD4-FEE1-22F5-583E-FECC-O

1 Although this space is used by all DOI registries, not just EIDR.

2 The world never really adopted the DEC-20's 36-bit word.

3 E.g. http://doi.org/10/f77?ignore_aliases returns information about the shortDOI itself rather than

resolving the DOI to which it refers.

4 Any other “/” characters in a DOI name have to be escaped to make the URN legal. Users of EIDR DOIs do not

have to worry about this.

5 See http://www.doi.org/factsheets/DOIIdentifierSpecs.html for more details.

 8

This is a fully legal URN, and the canonical EIDR ID can be extracted from it with no outside

information. However, the use of escaped sequences can be prone to implementation

errors in some contexts, e.g. in URLs, which require their own escaping, so in some contexts,

it may be preferable to use other forms of the ID.

2.5 URI

There are two standard ways to represent an EIDR ID as a URI.

• DOI is a registered URI within the info-URI namespace (IETF RFC 4452, the "info"

URI Scheme for Information Assets with Identifiers in Public Namespaces). For

example, info:doi:10.5240/5FD4-FEE1-22F5-583E-FECC-O is a legal URI.

• You can represent a DOI (and hence an EIDR ID) as a URI using the DOI proxy6.

http://doi.org/10.5240/5FD4-FEE1-22F5-583E-FECC-O is a legal URI.

There is also a non-standard way to represent an EIDR ID as a URI, included here because,

although it is non-standard, it is lossless.

• The use of the lowercase string “doi” complies with the IETF specification, RFC 3986,

for representation as a URI (Uniform Resource Identifier). This means that although

doi is not a scheme registered with IANA, doi:10.5240/5FD4-FEE1-22F5-

583E-FECC-O is at least syntactically legal as a URI.

3 Potentially Lossy Representations

Although EIDR IDs should never be compressed in a way that loses information, some

techniques run the risk of data loss even if they are not inherently lossy. However, some

applications may require such representations for reasons of compatibility with existing

processes, APIs, or databases.

Such representations are safe as long as they are used carefully in closed environments –

the risk of information loss increases when the representation is used outside of the system

within which it is defined.

Applications that use potentially lossy representations for EIDR IDs must ensure that if an

ID is ever presented to a user or in a document as a DOI or EIDR ID, the ID is presented in

the canonical format7. Of course, when presenting the ID within the originating

environment, the representation is entirely up to the defining system. When the ID is used

in other contexts outside the closed environment, it is important to use a canonical format

in order to ensure successful DOI resolvability and interoperability with other systems.

6 See http://www.doi.org/doi_handbook/3_Resolution.html#3.7.3 for more details.

7 Some applications may want to communicate the ID as an URN or URI, in which case the respective standard

representations should be used.

 9

3.1 Classes of Potentially Lossy Representations

EIDR members have expressed interest in two types of non-standard representations –

binary and URN. So far, there are no implementations of potentially lossy binary forms, but

see the next section for two implementations of alternate URN-based formats.

Future versions of this document will include potentially lossy formats as they come into

common use. Such formats will generally be specific to a particular application or

ecosystem.

3.1.1 Non-standard Binary

Compact binary could be made even more compact by replacing the 16-bit sub-prefix with

a single byte, which is then used to index a table of prefixes. Although this is smaller, it

requires extra information (the mapping table), so an ID of this form cannot be

reconstituted without knowing the extra information.

It may be appropriate for entirely closed systems, but should be used only as a last resort

and is strongly discouraged in other cases. For example, this case might arise with media

for connected devices that have legacy–driven space constraints. Such devices would have

to talk to EIDR-cognizant systems through an intermediary (such as a dedicated server)

that knew how that class of devices and media dealt with EIDR prefixes.

3.1.2 Non-standard URN

Some systems, due to bugs or historical accidents, may not accept even an escaped “/ “ in a

URN. For similar reasons, some systems may not accept the standard DOI URN format.

There are two approaches for dealing with this:

• Alternate translation: Translate the / to something else, for example the underscore

character. The scheme name for this non-standard escaping should not be the same

name used for URNs that escape the / in the standard way. For example:

urn:schemename:eidr-undr:10.5240_5FD4-FEE1-22F5-583E-FECC-O

This can also be used when implementations do not properly handle “%” escaping –

the important thing to remember is that none of these cases should use

undifferentiated eidr (which must be reserved for use in a standard URN format)

as a name or sub-name.

Although this form requires some external information (which characters get

replaced and the substitution character(s)) the pattern of an EIDR ID is simple

enough for an application to turn this back into the canonical form pretty easily.

• Truncated URN: Some URN–based systems may have length limits, or problems with

any special characters at all, requiring complete removal of the prefix. In that case, it

may be necessary to have a new URN scheme. URN schemes that escape, remove, or

replace characters in different ways should each define a different scheme (or sub-

scheme) name. For example, this scheme removes the prefix but leaves the hyphens:

urn:schemename:eidr-5240:5FD4-FEE1-22F5-583E-FECC-O

 10

For schemes like this to be lossless, these things must be true:

o It must be known that eidr-5240 indicates that the prefix is 10.5240

o If the representation removes punctuation, such as the hyphens, this must be

known to reconstruct the full canonical form.

o The scheme name and suffix should always travel together to ensure that

there is enough information present to know which prefix mapping and

punctuation replacement to use.

o Each EIDR prefix has a separate indicator in the scheme. In the example,

eidr-5240 implies the prefix is 10.5240; a new EIDR prefix would need a

new indicator, e.g. eidr-5241.

Unless all of these are true, there is a risk that an application will not know what to

do if it needs to turn this proprietary URN-based ID into a canonical EIDR ID.

3.2 Current Uses

3.2.1 EIDR-S

EIDR-S is a special URN-encoded form of the EIDR ID developed for use as a DECE (Digital

Entertainment Content Ecosystem) Content Identifier for the UltraViolet digital content

ecosystem. The DECE Content ID spec does not allow slash (“/”) characters, so the EIDR-S

format replaces the “10.5240/” prefix in a standard EIDR content ID with a DECE-

compliant “urn:dece:[ID TYPE]:eidr-s:” prefix. For example:

• urn:dece:cid:eidr-s:1E63-2E9A-11AB-FE88-1B89-M

• urn:dece:alid:eidr-s:50A5-34E1-4FFF-0BBD-17C9-G

• urn:dece:apid:eidr-s:8BAD-E17A-BD9D-0B5F-C6F8-R

3.2.2 EIDR-X

EIDR-X is an EIDR ID with enhanced version encoding in the form of a unique alphanumeric

suffix separated from the standard EIDR suffix by a colon. It is used when a workflow

requires a distinction between two objects that cannot normally be made using the EIDR

content ID structure. For example, if an UltraViolet content provider had a use case that

required two different ALIDs for distributing the same EIDR Edit as part of different offers,

multiple ALIDs could be created from the same EIDR Edit using the EIDR-X format.

An EIDR-X is constructed like an EIDR-S, except a suffix is appended to the EIDR I. For

example:

• urn:dece:cid:eidr-x:1E63-2E9A-11AB-FE88-1B89-M:Sony

• urn:dece:alid:eidr-x:50A5-34E1-4FFF-0BBD-17C9-G:UK

• urn:dece:apid:eidr-x:8BAD-E17A-BD9D-0B5F-C6F8-R:vudu

NOTE: EIDR-X suffixes are not part of a controlled vocabulary administered by any

registration agency, so it is up to the user to ensure uniqueness within their operational

 11

domain. For example, the UltraViolet Coordinator ensures that the same EIDR-X is not used

by two different parties.

4 Size summary

Format Size Needs external

information?

Canonical, with

hyphens

34 bytes no

URN, DOI format 34 bytes, plus length of scheme

identifier (e.g. urn:doi)

no

URN, escaped 36 bytes, plus length of scheme

identifier

no

info:doi 43 bytes no

http://doi.org/... 50 bytes no

URN, replace “/” with

a single character

rather than encode it

as %2F

34 bytes (min), plus length of

scheme identifier

yes

Canonical, no hyphens 29 bytes no

Full binary 19 bytes (8 bytes + 80 bits + 1

byte)

no

Compact binary 12 bytes (96 bits) no

shortDOI 8 bytes yes

