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Using Name-Based Mappings to Increase Hit Rates
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Abstract—Clusters of identical intermediate servers are often set of servers. For example, this information may be

created to improve availability and robustness in many domains. statically configured, looked up at client startup time, or
The use of proxy servers for the World Wide Web (WWW) and periodically distributed to clients

of rendezvous points in multicast routing are two such situations. .« Th . fi f a “hit rate” at that
However, this approach can be inefficient if identical requests ere IS Ssome notion of a “hit rate” at a server, so that a

are received and processed by multiple servers. We present an server responds more quickly to a duplicate request than
analysis of this problem, and develop a method called the highest to a first-time request. This is clearly true when the server

random weight (HRW) mapping that eliminates these difficulties. functions as a cache. It is also true if clients need to locate
Given an object name and a set of servers, HRW maps a request the server which was assigned to do a particular task.

to a server using the object name, rather than anya priori . . S . .
knowledge of server states. Since HRW always maps a given ° The benefit of object replication across servers is negli-

object name to the same server within a given cluster, it may be gible. That is, the CPU load due to any single object can
used locally at client sites to achieve consensus on object-server  be handled by a single server.

mappings. - . . .
We present an analysis of HRW and validate it with simulation The above characteristics cover a wide variety of domains.

results showing that it gives faster service times than traditional SOMe examples include:
request allocation schemes such as round-robin or least-loaded, 1) Real-Time Producer—Consumer Systerksr example,
and adapts well to changes in the set of servers. HRW is partic- in multicast routing protocols such as the core-based trees
ulfarly applicable g‘.’ doma:]ns in which th.‘f:".re are atI)arg_? nurr?ber (CBT) [1] and protocol independent multicast (PIM) [2]
?equsﬂzzt%bjzc? Jveillctgé tre?qu,?elssteﬁ ;g;'n']cg% Ft)r:?e gP'L'Jtylota; tdf}e protocol_s, rec_ei_vers’ routers request data for a gpe_cifi(? session
to any single object can be handled by a single server. HRW DYy sending a join request toward the root of a distribution tree
has now been adopted by the multicast routing protocols PIMv2 for that session, and sources send data to a session via the root
and CBTv2 as its mechanism for routers to identify rendezvous of its tree. The root thus takes on the role of a server, with
points/cores. receivers and sources becoming clients. Sources and receivers
Index Terms—Caching, client—server systems, computer net- must rendezvous at the root for effective data transfer.
works, distributed agreement, multicast routing, proxies, World 2) Client-Side WWW Proxy Cache#n the World Wide
Wide Web. Web (WWW), pages can be cached at proxy servers [3], [4].
All outbound client requests can then go through a local proxy
|. INTRODUCTION server. If the proxy server has the page cached, the page is

N THE USUAL client—server model, clients access obje(gturned to the client without accessing the remote provider.

data or services that are made available by servers. ﬁ\h‘erwse, the page is retrieved and cached for future use.

single-server system is not robust, however, and often provid 3 ?;?etgﬁfi{;’ggiﬁZgr?;ﬁsca\f\?ﬁ:noiin dgaré?]telalérv:thgce d
insufficient resources to handle a large number of reque v INs. proxy P

: : ar servers to handle inbound requests, the number of requests
Thus, clustersof equivalent servers can be used to increa 3 4 ’ q

service availability and to lower the workload on individual or a single object may rep.resent gnoggh central processing
servers unit (CPU) load to make object replication more effective.

In this paper, we investigate how a client may map a requ?gst3) Task Delegation:In task brokering systems, tasks may

for a particular object to a server, so as to minimize respon; & delega_ted to various servers. Any clients which deswe_to
time. In particular, we will limit our scope to domains withinteract with such a task must then contact the server running

the following characteristics. that task. , , . )
« All requests for the same class of obiects are handle For these domains, we will present an efficient algorithm
by a gluster of servers with equivalent qunctionalit aanﬂch maps requests to servers such that requests for the same
c; acit a y %bject are sent to the same server, while requests for different
pactty. : . . objects are split among multiple servers. We will refer to this
e The set of servers in the cluster is known to clients ) N .
rior to issuing requests, and all clients see the Sanglgncept as a ‘name-based” mapping.
P ' It is possible to view the case where all clients send requests
for the same object to the same server as defiaiffigities
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—_———— Goal 1 (Low Overhead):The latency introduced in picking
Servers (\D H J;) a server within a cluster must be as small as possible.

7\‘\*— Schemes which require purely local decisions have low
A B/ |B overhead, while schemes requiring an additional exchange of
network messages have high overhead. Also, for an algorithm
to be applicable to many domains, the mapping function must

Clients l}/__] é \ﬁ be portable and fast enough to use in high-speed applications.

Goal 2 (Load Balancing):To guarantee uniform latency,

Fig. 1. Object-server affinities. requests should be distributed among servers so that each
grver sees an equal share of the resulting load (over both

Several fundamental differences exist, however, betwe hort and | ¢ dl t the obiect Si d
multiprocessor systems and distributed systems which li e short and long erm) regardless of the object size an

the applicability of cache-affinity scheduling. First, muItiPoDUIarity distributions.

processor systems typically assume centralized Schedul4%{0ensurethatthlsgoal is realized, one must first define what

whereas clients in decentralized distributed systems in 8‘:"d balancing means, and consider how loads are generated.

pendently choose servers and direct requests to them. tAs \t/)velltkno;vn Eﬁ'g" [81) tthatt pattgrnl.c, gf requer?ts qa.rt1. t;e d
centralized scheduler in a distributed system also represert‘éy ursty when the request stream inciudes machine-iniiate

an undesirable performance bottleneck and a single pointr89ue5ts’ SO that the arrival process of req_uests_ IS not, in
failure. general, Poisson. The packet train [9] model is a widely used

Second. a centralized scheduler can maintain up_to_dgggernative to the traditional Poisson arrival model, and appears

processor load information, but such information is expensi\% model such request patterns weII.. W(_a therefore ad?pt _th|s"
to obtain in distributed systems, since scheduling may odel, and assume that requests arrive in batches, or “trains.
done locally at clients distant from the servers (in terms of F(l)r I((j)ad b?!anc;mg O\r/]er shprtl tl;ne |.nte|rvalsz wef focus on
latency). Finally, in some multiprocessor systems, a requestﬂﬂ‘la oad resu ting rom the arrival of a sing € train o requestg.
progress may be migrated to another processor as part of Eﬁéhls case, we desire that the load resulting from ea}ch train
scheduling algorithm. Such migration is usually undesirable 8F terms of amount of resources consumed) be split nearly

even impossible in distributed systems, and migrated reque%?ﬁ?”y im‘?”g. t%e a}vallab le SEIVers. K . ianed
must typically be restarted. ter the individual requests In a packet train are assigne

Although cache-affinity scheduling algorithms are not gfo servers, there are many possibilities for the load on any

rectly applicable in our domains, our goals are similar: tg"9I€ server. We can model the loadn a given server as
increase the cache hit rates and thus reduce latency by udfifg Value of a random variable The random variablé may
appropriate scheduling. We highlight the importance of using®$ viewed as representing a load distribution defined over an

sensible policy for reducing replication and improving hit rate'gﬁnite population of identical servers, so that the load on any

by directing requests for a given object to the same server®N€ Server is a single value sampled from this distribution. We
n similarly model the loads within a cluster of sizeas a

This paper makes two major contributions. First, it give$? , S i
a general model for mapping requests to servers: Section iMPle Of sizem from this distribution. For the algorithms
describes the model and typical goals of mapping functiof¥® analyze in this paper, we may consider this sample to
covers previous work, and shows how common mappi .the values ofn mdep_engient grbltrarlly dlstrlbuteq random
functions fit within our model. Second, we present our “namdariablesly, Iy, - -+, L, with identical means and variances.
based” mapping function: Section IV develops this notion, L€t theé mean and variance of the distributions of thee
Section V provides an analysis of our mapping functio @nd o, respectively. Ifiy,ly,---,1,, are the load values

and Section VI describes efficient implementations. Finally@mpled from the;, we are interested in defining a measure
applications in two popular domains are examined as cdSe€nsure that these sampled values are as close to each other
studies in Section VII. as possible. The sample standard deviatigmovides a good

measure of dispersion. However, the valuesoflepends on
the magnitudes of the sample valugsvhose expectation is
] ] o the population mean. We therefore normaliziey dividing by

Algorithms for mapping requests to individual serverg,q population mean, and deal with the rasi¢. Our goal
within clusters have typically concentrated on two goals: 10ag| pe to minimize this ratio.

balancing and low mapping overhead. We argue in this papeiconsider an incoming packet train that contaMisequests
that a number of other goals are important as well. We dlscu,ss;m ..., rx. Since these requests represent loads, we simply
these goals in this paper, and proceed to develop the notiglh; them as loads. Let these requests be drawn from indi-
of name-based mappings. We also propose a new mappjiig,a| distributions with meamp: and variances2. Let there

Il. GOALS FOR MAPPINGS

method called highest random weight (HRW) mapping thgk ,,, serverss;, Ss, - -, S,, and let each server be assigned
meets all the criteria discussed in this section. k = |N/m| requests. The resulting lodd on servers; is

» thus a sum oft random variables;; + r;2 + -+ + ;. We
A. Traditional Goals begin with the following lemma.

We begin by considering the two goals on which conven- Lemma 1: Let [; be a random variable whose valugs=
tional mapping algorithms have focused. 71 + T2 + -+ + ik represent the load on servék. The
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distribution ofl; is approximately normal with meaky., and latency would otherwise result, violating real-time deadlines,
varianceks? as N — oo. since the server selected by the consumer must first obtain the
Proof: The result follows immediately from the central-data from the producer. Section VII-A describes one example
limit theorem. See any standard book dealing with samplirg this effect.
theory ([10], for example). O A 100% hit rate for server selection can only be achieved
Hence, for sufficiently large packet train sizes, loads omhen the producer sends its information to all servers in a
all servers are normally distributed. We will now show thagluster (wasting resources), when consumers send requests to
loads in a server cluster become balanced if the coefficiedit servers (again wasting resources), or when all producers
of variation (ratio of mean to standard deviation) of the loa@nd consumers send data and requests for the same object to

distribution on servers tends to zero. the same server. The last of these OptionS may be viewed as
Lemma 2: Let I1,ls,---,l, be a sample of sizen from definingaffinities between objects and servers.
a normal distribution with meap and standard deviation, ~_ Replication can also reduce hit rates in caching schemes by
_ o . decreasing the effective cache size of the servers in the cluster.
If 5= \/Elﬁiﬁm (li =1)?/(m — 1) is the sample standardp, example, a study conducted in 1992 [11] reported that a 4-
deviation, (s/u) — 0 as(o/u) — 0. _ GB cache was necessary for intermediaries to achieve a cache
Proof: Let! be the sample mean, and {gt=1[; —I. By it rate of 45% for FTP transfers. Thus, if we used four servers
the usual definition of sample variance, we have and a mapping scheme which allows replicatieachserver
( 1)s2 5 would require a 4-GB cache to achieve a 45% hit rate, rather
m_—23 — (ﬂ) NI (@)2 than only a 1-GB cache each. On the other hand, in a balancing
g g g

scheme that avoids replication, each server would see requests

The sum on the right side follows the? distribution [10] for one fourth of the objects. Intuitively, its response time and
with m — 1 degrees of freedothThus, we may writes®> = cache hit rates would then be the same as if there were only
27,2 —1)]. Therefore, 2 _ 27,2 _ 1/4 the requestable objects, and the probability of finding a
T)]Fxgir;éé(g:@(? Zi]istribution is(‘;{)%)nded(gfzggEE’Q"*?EZ_ requested object in the cache will thus be greater. As we will
1)] — 0 as(a/u) — 0. Hence, (s/p)2 va’nishes arg_vtell ] see in Section VII-B, this scheme allows each server to get an

We can now combine these lemmas to conclude that f%guwalent hit rate W'th 0r_1|y a 1-GB cache. . .
g L o If the growth of replication is slow, however, it is unlikely
sufficiently large packet train sizes: 1) the load distribution on .
. . . to be a matter for concern. However, as Theorem 6 of Section
servers is approximately normal and (2) the loads in a ser\«;rE demonstrates, replication can get quickly out of hand
cluster become balanced if the coefficient of variation of this  Tep get q y !

normal distribution tends to zero. We will find this result usefLﬁmd an opjegt can be expected to become replicated im all
ervers within aboutn + m Inm requests.

in studying the propertles of request mapping algorithms i An important factor to consider is that the latency for the
subsequent sections. . . X :
server to retrieve the object from the remote provider is far
longer than the latency to retrieve the object from the server’s
cache. We thus formulate the following additional goal for a

This section provides the motivation for our name-basetapping algorithm.
method for assigning objects to servers. We motivate our Goal 3 (High Hit Rate): The mapping scheme should at-
approach by discussing the issues of replication and disruptitgmpt to increase the probability of a hit.

1) Replication and Rendezvous Issuésrequest mapping 2) Minimizing Disruption: Whenever a server comes up or
algorithm can reduce retrieval latency not just by balancirgbes down, the current object—server affinities may change.
loads and maintaining low overhead but also through a thifthis leads to another goal.
mechanism: minimizing replication of work. Poorly designed  Goal 4 (Minimal Disruption): Whenever a server comes
mapping schemes can cause several different servers to douper goes down, the number of objects that are remapped to
same work, lowering efficiency. Replication of work ariseanother server must be as small as possible.
when client requests for the same object are sent to multipleln multicast routing, for instance, this goal minimizes the
servers, causing them each to retrieve and cache the sammber of sessions liable to experience data loss as a result of
object separately, for example. changes to distribution trees. For distributed caching systems,

Such replication is particularly unacceptable in real-timghis maximizes the likelihood that a request for a previously
producer—consumer domains, where a producer sends real-toaehed object will still result in a cache hit.
object data to a server. Since consumers retrieve object datA parameter of particular significance for schemes to map
from servers, producers and consumers merstlezvousit the  objects to servers is thdisruption coefficients, which we
server for successful information transfer. That is, producedefine as the fraction of the total number of objects that must
and consumers must select the same server independeb#yremapped when a server comes up or goes down.
and simultaneously. Real-time data requires low end-to-endTheorem 1 (Disruption Bounds)Eor everymapping which
latency, so a 100% hit rate for server selectioreuiredfor a evenly divides objects among servers, the disruption coeffi-
successful rendezvous between producer and consumer. Loiegit 6 satisfies

B. Additional Goals for Mappings

1

1There are onlyn — 1 independent terms in the sum on the right side. We —<6<1
can choosen — 1 values arbitarily, but the last value is now fixed because . m .
Ii + -+ + l,, = mi must hold. wherem is the number of active servers.
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Proof: Let V be the number of objects cached within théhe time it is acquired and used by a client. In the worst case,
cluster. We first observe that no more th&nobjects can be all clients issue requests to the same previously idle server,
disrupted, giving one as the upper bound on disruption. Nextrédsulting in a very high load.
objects are evenly divided among servers, then therévVdre Minimum-load mapping is, however, the approach taken in
objects assigned to each server at any time. When one or mar@ny existing systems. For example, Cisco’s LocalDirector
servers go down, alN/m objects assigned to each server thdl2], which redirects WWW requests to one of a set of local
goes dowmmustbe reassigned to another server, regardlesssdrvers, periodically queries the servers for status information,
any other changes. Thus, disruptiér» (N/m)/N = (1/m). thus potentially using out-of-date information. In the Contract

When one or more servers come back up, all objects whiblet protocol [13], servers are queried for load information
were previously mapped to each servaustbe reassigned to when a request is ready, introducing additional latency.
it when it comes back up. This is because the set of active
servers is then identical to the set of active servers before Oe Fastest Response Mapping
server(s) originally went down, at which time it had/m
objects. Since clients making a purely local decision can
distinguish between the two cases, the previous mapping
be restored. ThusV/m objects must be reassigned to eac
new server regardless of any other changes. Hence, aggl
disruptioné > (N/m)/N = (1/m).

In the fastest response scheme, a client pings the servers and
ks the one that responds first. Thiigyi) = (response time

tSi). When all servers are equally distant, this mapping is
imilar to the least loaded scheme (with the same advantages
! disadvantages), since the server with the least load typi-
cally responds first. The Harvest [4] web cache implementation
and the Andrew file system (AFS) [14] both use this method.
I1l. A M ODEL FOR MAPPING REQUESTS TOSERVERS

Any scheme which maps a request for an objectt D. Round-Robin Mapping

to a specific server in a cluster can be logically viewed asA simpler scheme is round-robin, where successive requests
picking the server which minimizes (or maximizes) some valuge sent to consecutive servers. For example, when a name in

function f. Let S = {S;,S2,---,Sn} be a cluster ofm the domain name service (DNS) resolves to multiple IP ad-
servers. A typical mapping functiof thus selects a serverdresses, DNS returns this list of IP addresses, rotated circularly
S; at time ¢ such that after each request. If clients use the first address on this list,
k ) . L. requests will be sent to the various IP addresses in round-robin

Fi(rt) = Sihili) < fil9), £ (1) fashion? thereby balancing the number of requests sent to each

wherei and j are indices of servers [15]. The NCSA scalable web server configuration [16] is one

A number of mapping functions have been used in practigé(ample of such use of DNS. .
dWhen all servers are up, a true round-robin scheme maps

that attempt to realize one or more of the goals discuss% th " t to the cluster to théh aul
in Section Il. The goal of balancing loads is particularl;} enth request sent o Ihe cluster to server (m_o u'o
). Thus, F(r,) = n(modm). To get an ordered list for

significant from our point of view since it directly influenced " n _ . L : .
; robustness, this is logically equivalent to assigning weights in
response times. gel
We now present some commonly used value functions aRyf modet as
discuss how well each of them achieves the above goals. fo(i) =i(mod m)

Jn(t) = (fa—1(¢) — 1)(mod m)

wheren denotes the number of previous requests sentrand
In a static priority scheme, the server list is staticallys the number of servers.

ordered, e.g.f(i) = ¢ in the model described above. Clients We now demonstrate formally that round-robin achieves

simply try contacting each server in order until one respondsad balancing when the request rate is high. As discussed
While this does provide fault tolerance, the entire load wiBarlier, we will use the packet-train model [9] for our analysis.

typically fall on the highest priority server, potentially causing Let & be the number of requests in the batch or train. Let

long response times during times of heavy use. In addition, théepe a random variable describing the service time for one
cache space available is underutilized since the space availgblfuest. Lel; be a random variable describing the total service

A. Static Priority Mapping

at the other servers is not used. time for all requests in the batch which are mapped to a given
serversS;. (Note thatl; is independent of the queue discipline.)
B. Minimum-Load Mapping Theorem 2 (Round-Robin Load Balancingd)etl; be a ran-

Sending a request to the least loaded server divides requé@® variable describing the total processing required for all
between servers so as to keep the load low on each ser{fuUests mapped to a given senvgr If N requests are
providing faster service times. Herg s some measure of the 25Signed tan servers in a round-robin manner, then the square
current load, i.e.f, (i) = (load onS; at timet), thus requiring ©f the coefficient of variation of; is given by
an add_|t|onal_mechan|sm (either periodic or on demand)_ to CV[MQ _ (_)CV[,,,]Q )
determine which server currently has the lowest load. Making N
FhiS .determination is nontriyial, Sinlce clients are ConStamlyzNote that DNS may not give true round-robin ordering when clients
issuing requests, and load information may be out-of-date fherate duplicate requests, due to DNS caching at clients.
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and, hence, when has finite variance since request service times are i.i.d. We next observe that the
_ number of requests mapped to a given server is binomially
Jim CVIL] = 0. distributed with success probabilipy= 1/m. Thus, we obtain

2 2
server will get exactly (whenV is a multiple ofm) N/m k mN (kB[] + k(k — DEDT).

requests. Since the value Bffor a given server is the sum of
the service times of the requests mapped to it, we get This equation can be split into the terms for each moment
of r

Proof: Since requests are assigned round-robin, eac%[ 2 zj\: <N> (m—1)N-k

k=0

E[l] = (N/m)E[r]. (3) ,
] = (N/m)El] ElZ)=mN(A-E[F?|+ B E[r]*).
Since service times of individual requests are independen

L, -
and identically distributed, the variance is also additive, givingﬁ‘er[Ing k' = N —k, we can now solve for the coefficients

and B separately as follows:
var[l;] = (N/m) var[r]. 4)

al N / k
Equation (2) directly follows from (3) and (4), sin€&/[1;]? = 4 k,zzzo <N - k'>(N F)m = 1)
var[lz]/E[lZ]Q O N—1
Lemma 2 now guarantees that the load is balanced when -N Z < N-1 />(m — 1)V
is large, and the load is therefore significant. This observation 0 N-1-k
applies both to long-term load balancing (whéve— oo as — N1

the time interval of interest grows), as well as short-term load _ _ _ o
balancing as the request rate increases (i.e., when large batéggying the binomial theorem in the last step. Similarly,

of requests arrive within a short period of time). N W
B=>" N M(N—k’)(N—k’—l)
k,_o N _ k/ N

E. Random Mapping m
Another way to balance the expected number of requests _N(N Pl N-=-2 X
assigned to each server is to send requests to a server chosen — (V-1 Z N-2_F (m—1)

at random, e.g.,f[({) = random( )], as suggested in [14]. k=0

This is referred to in queueing theory asandom split =N - 1)m1\ -

As before, letlV be the number of requests in the baich pytting these results back into the original equation, we
or train. Letr be a random variable describing the servicgpiain
time for one request. Ldi; be a random variable describing
the total service time for all requests in the batch which are E[I}] =(N/m)E[r*] + (N(N — 1)/m?)E[f]*  (7)
mapped to a given serves;. (Note thatl; is independent of var(l;] :E[lf] — E[li]2
the queue discipline.) 2 _ 2 2

Theorem 3 (Random-Split Load Balancing)et I; be a (N/ng[TQ] + (]2\7(N L)/m”) Elr]
random variable describing the total processing required for — (N°/m”)Elr]
all requests mapped to a given server.Nf requests are =(N/m)E[r*] — (N/m?)E[r]*. (8)
randomly assigned tor servers, such that the probability that
a request will be mapped to a given servetd fsn, then the

Thus, for the square of the coefficient of variation, we get

square of the coefficient of variation &f, is given by CVL)? =varll;)/E[L)?
- N/m)E[r?] = (N/m?)E[r]?
12 _ ﬂ 2 m 1 — (
ovip=(gover+ (") © D E].
and, hence, when has finite variance Simplifying, and using the identity CV[r]*> =
(E[r*]/E[r]?) — 1, we obtain (5). O
lim CV[i;] =0. Table | summarizes how well each function discussed above

N—oo

meets the desired properties.

Proof: Since the value of; for a given server is the sum
of the service times of the requests mapped to it, we get IV. MAPPINGS BASED ON OBJECT NAMES

E[li] = (N/m)Er]. 6) Not every scheme which avoids replication has a low
disruption coefficient. For example, the static priority mapping
To find the second moment of the service time, let a sen@gorithm (Section 1lI-A) certainly avoids replication, since all
receivek requests ;, s, - - -, 7. Then the square of the totalf€quests are sent to the same server. However, its disruption
expected service time is given by coefficient is unity since every object gets remapped when the
primary server fails. Disruption can be minimized by balancing
E[(ry + - +7)% = kE[rY]) + k(k — V)E[r]? the number of objects mapped to each server.
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TABLE |
MAPPING FUNCTIONS
E\/iapping f Balances | Overhead | Replication
Static Priority | f(i) =1 Nothing Low No
Least-loaded fi(¢) = load on S; at time ¢ Load High Yes
Fastest-responsc | f;(i) = response time for S; at time ¢ | Resp.Time High Yes
Round-robin Falt) = (fama(i) = 1) (mod m) # Requests | Low Yes
Random F(@) = random() # Requests Low Yes
HRW (see Section IV.A) # Objects Low No

One way of accomplishing this goal is to use the name of theThus, HRW may be characterized by rewriting (1) as
object to derive the identity of the server. Since this mappirfgllows:
is a purely local decision, its overhead remains low. Unlike
conventional mapping schemes based on name servers, suchrg %y = 5;: Weight(k, Si) > Weight(k, S;), i .
mapping is “stateless” since it depends only on the identities ©)
of the object and the cluster servers, and not on the state at the
cluster servers or that held in a name server. Such a stateless ) ) )
mapping can be viewed ashash functionwhere the key is wherek is the object names; is the IP address of server
the name of the object, and the “buckets” are servers, ~ andWeight is a pseudorandom function éfand 5;.

In our case, the number of buckets can vary over time as!f Servers have unequal capacity, the weights assigned to
servers are added or removed. Second, it is possible for GReh server may be scaled by a constant distributed to clients
or more of the servers to be down, so that an object m@eng with the server’s address. This would allow servers with
hash to another server when one goes down. Therefore, fi@r€ capacity to receive a proportionately higher portion of
output of such a hash function must be ardered list of the load. In the remainder of our d|scuss_,|on, however, we will
servers rather than a single server name. In some domaffSume that servers have equal capacity.
such as PIMv2 [17], the list of servers is dynamically updated
to exclude unreachable servers. In this case, it suffices for
the hash function to map a name to a single server. We are
interested in the more general case, however, and therefor§Ve now analyze the HRW algorithm described above and
define a stateless mapping as a function which, given a lestamine how well it satisfies the requirements outlined in
of servers, maps an object name to a specific ordering of tBections 1l and IV.
server list.

A conventional hash function maps a kgéyto a number

representing one af. “buckets” by computing as a function . . . .
of k, i.e., i = h(k). The function’ is typically defined It is easy to see that HRW requires no information beyond

as h(k) = f(k)(mod m), where f is some function ofi SETVer and object names. This allows clients to make an
(e.g., f(k) = k whenk is7 an integer). In our case, a kdy immediate decision based on purely local knowledge.
corresponds to an object name, and a bucket corresponds to '8 réal-time producer—consumer domains, it must be pos-
server in a cluster. A serious problem with using a modulo-Sible to change the server in use IW|thout requiring the data
function for mapping objects to servers, however, arises whsAnsfer to start over. In such domains, some optimizations are
the number of active servers in the cluster changes. desirable when the server changes, if a client is receiving a
If a simple modulom hash function were used to map/@'9€ number of objects simultaneously. _

objects to servers, then when the number of active serverdiSt, when a server goes down, clients must reassign all
changes fromm to m — 1 (or vice versa), all objects objects previously mapped to that server. For each of those ob-
would be remapped except those for whigtk)(mod m) = jects, if the list of weightd¥ eight(k, S;) has been preserved,
F(k)(mod m — 1). When f(k) is uniformly distributed, the this list can be used directly to reassign the object to its new
disruption coefficient will thus bém — 1)/m; i.e., almost all maximum-weight server. Alternatively, the implementation

objects will need to be reassigned. Clearly, a better scheff/ld trade speed for memory by recalculating the weights
is needed. for each server and not storif@ cight(k, S;).

Second, when a server comes up (and the lists of weights
) have not been preserved), recalculation of all weights for
A. HRW Hashing all objects can be avoided simply by storing the previously
We now introduce a new mapping algorithm, which we calwinning weight. Then, when the servef; comes up, the
HRW. HRW operates as follows. An object name and servenplementation need only comput& cight(k, S;) for each
address together are used to assign a random “weight” to eablject & in use, and compare it to the previously winning
server. The servers are then ordered by weight, and a reqwesight for k. Only those objects for whicl¥; yields a higher
is sent to the active server with the highest weight. weight need be reassigned.

V. PROPERTIES OFHRW

A. Low Overhead
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B. Load Balancing We can now substitut&[q;] = 1/m,p = 1/K and rearrange

Let there be a sef = {S},5,,---, S} of m servers. Let to obtain (10). . .
O = {o1,09,---,0x } be the universe of requestable objects. Theorem 5 (Hash-Allocation Load Balancing)et K~ ob-
Some objects are likely to be requested more frequently thiggtS P randomly partitioned among servers using HRW,
others, so leb; have popularityp;, defined as the probability With €ach server receiving exactly/m objects. LetV be the
that an incoming request is for object. Let M:0 — S request train size, and let the service timef requests and

be a mapping of objects to servers that partitions the obje@£0th have finite variance. Then, if is a random variable
equally among the servers. representing the amount of processing done by sesyer

The actual run-time load experienced by any serger lim lim CV[;]=0. (13)
clearly depends on the popularities of the objects mapped to N=oo Koo o o
it. The more popular the objects mapped 49 the greater Proof: From Theorem 4, the coefficient of variation of

the load it sees. By analogy with object popularities, we may — 0 asK — oo for any server. From (11)¢q;] = (1/m)
define the popularity of a served; as a random variablg; is independent of’ so thatvar[g;] — 0 as K — oo and,
whose value equals the sum of the popularities of the objef@nce.g; — (1/m). We can now apply Theorem 3, and (13)

mapped to it. Thusg; represents the probability that a requedpllows immediately. O

will be sent toS;. If qi,q2,--,qn are server popularity Using Lemma 2, we can now conclude that the processor

values, we must havEi<;<m, ¢ = 1 sinceXi<i<x p; = 1. loads are balanced when the conditions of Theorem 5 are
Let the mappingV/ assign objects;;,o:2, - - - , 03 to server Met. That is, the load-balancing effectivenéssreasesas the

S;. Since M assigns all objects to servers, we can vieflemand increases.

0i1, 042, +, 0;;, @S a selection of sizé from the setO, such

that any object; is selected with the probability/ K. We can C. High Hit Rate

similarly model server popularities by viewimg, pi2, - - -, pix Itis easy to see that HRW avoids replication, thus potentially

as a sample of sizé& from pi,ps,---,pri, taken without giving a higher hit rate, as long as clients have a consistent

replacement. In this case, the population m@as- (p; + list of servers for each cluster. Again, we assume that the
p2+ - +pr)/K = 1/K, since thep; sum to 1. Let the server list is known to clientsa priori. For example, it
population variance be?. may be statically configured, resolved at client startup time,

We now prove two theorems that characterize the loagr periodically distributed to clients. See [18] for further
balancing properties of HRW. Theorem 4 states that thgscussion of these issues.
coefficient of variation ofg; vanishes as the number of
objects K becomes large. Theorem 5 states that the amoymt Minimal Disruption
of processing done by each server is balanced when Roth
and N are large.

Theorem 4 (Hash-Allocation Request Balancingpt K
objects be partitioned among servers using HRW, with each
server receiving exactl = K/m objects. Ifp;, 7, o—g andg;
are as defined above, then the square of the coefficient
variation of ¢, is given by

When a serverS; goes down, all objects which mapped
to that server must be reassigned. All other objects will be
unaffected, and so the optimum disruption bound is achieved.
The randomizing property of HRW allows the reassigned
ogijects to be evenly divided among the remaining servers,
thus preserving load balancing.

When a servelS; € § comes back up or when a server

m—1 S; ¢ S is added to the sef, then the objects which get
CVig) = <_K — 1)0V[p]2 (10) reafsigned to it are exactly those that yield a higher weight for
S; than for any other server. This again achieves the optimum
disruption bound ofl /m.
lim CV[g]=0. _Thus, we have shown that HRW achieves the minimum
K—oo disruption bound.

and, hence, whep has finite variance

Proof: Let objects 0;1,0;2, --,0u,k = K/m be _ _ _
mapped toS;. As before, we can treat the object popularitiek. Comparing HRW with Other Mappings
p; as a sample of sizk, and writeg; = pi1 + pi2 + - - + Pik. It is instructive to compare the performance of HRW qual-

If p, = (pir + pi2 + -+ + pir)/k is the sample mean, thenitatively with that of other mappings, particularly with the
q; = kp;, so we haveE[q;] = kE[p;], var[q;] = k*var[p;]. We  round-robin and random mappings, which are also stateless.
know from sampling theory [10] thak[p;,] =p = 1/K, SO Section VII presents an empirical comparison of HRW with
other mappings.

Elg)] = kp = (K/m)(1/K) = (1/m). (11) The round-robin and random mappings do an excellent
We also know from sampling theory [10] thatr[p;] = job of balancing loads, as Theorems 2 and 3 demonstrate.
(K — k)(o2/k)/(K — 1). Sincevar[g;] = k?var[p;], we can However, balancing server loads is not the primary criterion
substitute and simplify to get for favoring a mapping. Ultimately, it is often more important
to optimize response time. For the application domains of our
m—1Y\/[K? ; P ;
var[g)] = [ —— | = )02 (12) interest, server load balancing is an important goal only to the
K-1)\m?)* extent that it helps optimize response time.
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Optimizing response time means reducing both the expectedt is clear that full replication is achieved rather quickly.
value as well as the variance of the response time. A seriotdith ten servers in a cluster, the expected number of requests
problem with the round-robin and random mappings in caching reach full replication is about 30. Therefore, the effective
domains we consider is that decreases in response time daehe size of the cluster is reduced by a factor of ten after
to load balancing tend to be counterbalanced in practice Ay average of about 30 requests per object. In contrast, the
significant increases in retrieval latency due to cache missesplication factor in HRW is always zero. Thus, the effective
Each cache miss requires a retrieval from a remote provideache size remains unchanged under HRW mappings.
an operation that may be orders of magnitude more expensivd) Caching Under HRW:Since the goal of a caching pol-
than retrieval from a local cache. icy is to maximize the hit rate, a caching policy attempts to

Some of this effect arises from replication of data elementsche the set of objects most likely to be requested next. Since
in the server cache. In an intuitive sense, replication decreatis future is unknown, the caching algorithm must predict this
the effective cache size for the cluster as a whole since reet in practice.
cated objects are held in more than one server, thus wastind\n “optimal” caching policy is one which maximizes the
cache space. However, replication is likely to be problem onprobability that the object named in the next request is in the
if it grows quickly enough. We now demonstrate that in theache. Let object have sizes;, and letp, (¢) be its popularity
absence of a deliberate effort to control it, replication caat time¢. That is, pi(¢) is the probability that an incoming

quickly get out of hand. request at time is for objectk. The expected hit rate for the
Theorem 6 (Replication Growth for Random Selectiobgt next request is then equal ¥y.cpx(t) whereC is the set of
S = {5,585, --,5»} be a cluster ofm servers, and let cached objects. Thus, the optimal set of objects to cache at

r¥ vk ... be a series of requests for objéctFor each such time ¢ in a cache of size> maximizes} , . px(t) subject to
requestr?, randomly select a servéf;, and assign* to S;. If ~ the constraint thab", .. s < C. This is an instance of the
p requests are processed beforenalservers cache the objectKnapsack problem, which is known to be NP-complete [20].

k, then Cache replacement strategies can then be viewed as heuris-
1 tics to solve this problem. Since the future is unknown, they
Elpl=m <lnm trtg o+ O(m_2)> (14) must use local estimates of thg(¢)’s based on statistics such
m as recency or frequency of reference, typically deriving them
wherey = 0.57721-- - is Euler's constant. from past history.

Proof: We can view the progression to full replication as If & requesu:’“ for object & may be sent to any server
a series of phases, with phasdeing the duration betweenin a cluster with equal probability, then each server will
(i—1) servers caching the object andervers caching it. The see the same set of object popularitiggt). That is, the

process begins with phase 1 and ends after phase probability that the next incoming request is for objéds the
Letn, be the number of requests in phas€learly,n; = 1. same at all servers. We will refer to such mapping schemes
By definition as “nonpartitioned mappings.” These include all mappings
previously discussed which allow replication (i.e., all except
p= zm: " (15) static priority and H_RW). C_?onversely, we will refer to mapping
— ’ schemes under whigh, (¢) is nonzero at exactly one server for

eachk as (completely) “partitioned mappings.” These include
During phasei there are(i — 1) servers which cache theHRW and static priority.
object andm — ¢ + 1 servers that do not. Since requests Assuming equal cache sizes, all servers under a nonparti-
are randomly assigned to servers, the probability that a givéened mapping will have the same expected hit rate under an
phase:request is sent to a server that does not cache the objggtimal caching scheme, since they all see the same object
is (m — ¢ + 1)/m. Thusn;, the number of phasefrequests popularities. However, as the number of servers grows, each

follows a geometric distribution, so that server will see a smaller fraction of incoming requests, spaced
m farther apart, and so its estimates f(¢) can degrade in
Eln;] = m—it1 quality. Thus, we expect the hit rate seen by nonpartitioned
mappings to decrease as the number of servers grows. As
Using linearity of expectation in (15), we gef[p] = we will see in Section VII-B, trace-driven simulations have
YLy Elni] = EL, m/(m — i+ 1). After changing the confirmed that this is indeed the case in practice.
summation index appropriately, this reduces to Theorem 7 (Partitioning Non-Harmful)lUnder an optimal
m caching scheme, the expected hit rate in a partitioned mapping
Epl=m Z—,. will be greater than or equal to the expected hit rate in a
=1 nonpartitioned mapping.

Proof: At time ¢, let Cy be the set of objects cached at

It is well known (see [19], for example) that " . )
some server under a nonpartitioned mapping and an optimal

L] 1 L caching scheme using a cache of sizd et Py = Xjcc, pr(t)
> s=limty 4o - O(m™7). be the expected hit rate for a request sent to that server at
=1 time ¢. Under an optimal caching scheme, we know tlgt

Substituting above, the theorem follows. O is maximized, subject td , . sx < C. Without partitioning,
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all servers see the same set of object popularitiegsis the whereD(k) is a 31-bit digest of the object nanie and.S; is
same for all servers. Hence the expected hit rate of the entine address of thih server in the cluster. Note that the length
cluster is alsaF,. of the address does not matter, as only the low-order 31 bits

Let K; be the set of objects mapped to ser&rin a are significant in modulo® arithmetic.
partitioned mapping. Lef’; = ¥cc.nk, pr(t) be the portion  This function generates a pseudorandom weight in the range
of P, due to objects which get mapped $o in a partitioned [0---23! — 1] and is derived from the original BSBand
mapping. (ThusP, = ¥, P,.) LetC! C K, be the set of function? where it corresponds to
objects cached af; under an optimal caching scheme using .
a cache of size”. srang(&) d ~D(K

Let P! = Eyecrpi(t) be the expected hit rate at serv@r \s}\r/ar_l (ran_ 0 ()

SREC; . . . eight = rand().

under a partitioned mapping and an optimal caching scheme.
We will now show by contradiction thak} > F; and, hence,  Thjs function can be implemented with only a few ma-

> iz P 2 Iy (i.e., the hit rate of the cluster is not decreaseghine instruction, requires only 32-bit integer arithmetic,
under a partitioned mapping). _ _and exhibits a number of desirable properties, as we will

Assume thatF; > F;. Then there exists a set of object§ee in Section VI-A. Thus, implementing HRW entails first
Ci = Co N Ky, with Zpee, sk < Ypee, sk < O, and  computing D(k) and then computingVana(k, S;) for each
Ekee, pr(t) = Pi> F) = Syecpi(t). Thus, P/ was not the g, The time to do this is typically negligible compared to the
optimum solution to the Knapsack problemt and we have petwork latency.

a contradiction. [ In the unlikely event that multiple servers are assigned the

Thus, the expected hit rate under an optimal caching schegigne weight for a namé, ties can be broken by choosing
in any partitioning scheme will be greater than or equal to thge server with the highest;. The following theorem states
expected hit rate under an optimal caching scheme in agyactly when such ties will occur.
nonpartitioning scheme, and grows as the number of servergheorem 8:1n the W, function, a tie between two
is increased since more objects can be cached. In additioyefyerss; and S; occurs if and only ifS; = S;(mod 231).
server sees the entire request history for objects assigned to it, prgof: First, assume thas; = S;(mod23%). Then it

regardless of the total number of servers. Thus, the quality jgfeasy to see from (16) thal,ana(k, Si) = Weana(k, S;)
estimates ofy(¢) does not degrade as the number of servegice modulo-3* congruence is preserved under addition,
Increases. o . _ multiplication, and the XOR operation.

Since caching policies depend on such estimates in practicegor the other direction, assume thaltyana (K, S;) =

the hit rate is expected to increase with the number of servggs (k. S.). Then, since modulo®® congruence is pre-
in HRW and decrease in all other mapping schemes which ggneq un:jer subtraction

not partition the set of requestable objects. Again, as we will

see in Section VII-B, trace-driven simulations have confirmed((AS; + B) XOR D(k))

that this is indeed the case in practice. = A((AS; + B) XOR D(k))(mod 2°) (17)
Thus, HRW allows the hit rate to be increased. For this

effect to be significant, the maximum hit rate possible musthere A = 1103515245, B = 12345. But A and 2! are

also be significant, i.e., a significant number of requests mustatively prime, so a standard result from number theory [21]

be for objects which were requested in the past. Combinitgjls us that we may cancel, leaving us with

this observation with the conditions in Theorem 5 giving good a1
load balancing, we obtain the following corollary. (ASi+B) XOR D(k) = (AS;+B) XOR D(k)(mod2™).

Corollary 1 (HRW Applicability). HRW —is  particularly UPing the fact that modulo2? congruence is preserved under

suitable for domains where there are a large number . .
requestable objects, the request rate is high, and there is a ﬁ?'%XOR operation, then by repeating the procedures above,

N — g, 31 is Wi -
probability that a requested object will be requested again. fmally_get thats;; = S?(mOd2 )- This will be the case if
- e ) . . . -and only if the low 31 bits of5; and.S; are the same. [
This condition is true in a wide variety of domains. We wilft

study two of them, multicast routing and WWW caching, in Theprem 8 can be used to determine when ties can occur
S . in a given domain. It guarantees, for example, that a tie can
more detail in Section VII.

occur in IPv4 only if the IP addresses of the two servers differ
V1. IMPLEMENTING HRW MAPPINGS only in the most significant bit. Thus, no tie-breaking rule is

Th iaht f . is th ial d ) ¢ UR needed such as when it is known that all servers are within
e weight function is the crucial determinant o he same network.

performance. To achieve a high hit rate, all clients should use
the same weight function. Based on an evaluation of differeRt
randomization schemes (see Section VI-A), we recommend a
HRW scheme based on the weight functidf,,q defined as ~ We now compare the performance of th&.,q function
with that of other possible weight functions to see how well

Comparison of Weight Functions

Wieana(k, Si) = (1103515245 - (1103515245 - S;

e . . .
+12345) XOR D(k)) +12345) (mod 23!) useS(l{lg;é:jﬁ}:lgct;;no longer the same on all platforms, implementations should

(16) 4For example, 7 on an i386 withcc-O2 , not counting the digest.
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D(k) consecutiveD(k) values starting atD(k) = E0020001,
_ were again used. It is interesting to note that all methods but
i Wiand and Wiandaom Were sensitive to the number of servers.
Si Weight We also ran other experiments (not shown) with different
| | starting server addresses, and observed that the same methods
@) were sensitive to the starting IP address as wéll..q and
Wiandom remained relatively unaffected.
Si The relative performance O,,na and Wyanq2 can best
be understood by examining Fig. 2, which represents the
D(k) Weight functions as two randomization stages separated h¥ @R

operator. If we fix the input to the first stage at a given value,
- ) and input a series of numbers to the XOR operator, we
would expect the input to the second stage to be significantly
Fig. 2. Two-stage random weight functions. correlated with the series;. Whenever we input a sequential
series of numbers to the XOR in our experiments, the input to
it achieves load balancing. We consider several alternatite second stage will be correlated with this sequential series,
weight functions. lowering the degree of randomness of eightvalue output.
The first competing weight function we consider is based ¢an the other hand, when the second input is also uniformly
the Unix system functionsandom andsrandom in place of distributed, both functions perform similarly.
rand andsrand , resulting in a weight function we denote We also observed thd¥;,,q and Wana2 were about 200
Wrandom-> The second function we consider uses the minimimes faster thaiV.anqorm, Sincesrandom is computationally
standard random number generator [22], [23], resulting in tGEPENSIVE.

weight function We thus conclude that, of those weight functions studied,
Weana and Wo,na0 give the best load-balancing performance.
Wninsea(k, S;) = (16807((16807 - S;) XOR D(k))) The choice of which is most appropriate for use with HRW

(mod (2% —1)). depends on the characteristics of the domain of use.
. - . ) Finally, while we could have simulated many other types
Our third alternative is to modify théViang function as ¢ heedorandom functions, we note that finding a good pseu-

follows: dorandom function is hard [22]. Given the good performance
Wieanaz(k, Si) = (1103515245((1103515245 - D(k) of W.ana @s a hash function, we felt that investigating other
+12345) XOR S;) + 12345)(mod 2%"). weight functions was not necessary.

(18)
VIl. CASE STUDIES
It can be shown that Theorem 8 appliesiQana2 s Well, 14 show how HRW applies to a variety of domains, we now

using a similar proof. Fig. 2 depicts the relationship between ;mine two applications in more detail.
Wiana and W42, Where each of the small boxes represents

a randomizing filter. . .
Finally we evaluate the option of performing an 8—bi€‘ - Shared-Tree Multlt?ast Routl-ng
exclusive-OR over all the bytes df and S; to get a single  In shared-tree multicast routing protocols such as PIM [2]
one-byte result. We call this thé/,,,. weight function. and CBT [1], receivers’ routers request packets for a specific
As a basis for comparing functions, we will assume th&ession by sending a “join session” request toward the root of a
100 randomly selected objects are being serviced at a tirfiéstribution tree for that session. Sources send data to a session
and look at the coefficient of variation of the number opy sending it toward the root of its tree. The root, known as
objects assigned to each server. Fig. 3 shows the results2ofendezvous point (RP) in PIM, andcare in CBT, thus
this simulation, with each point representing an average o\ﬁgkes on the role of a server. Routers with directly-connected
5000 trials. senders and receivers become the “clients.”
Fig. 3(a) and (b) shows the results using random addresse&n “object” i.n this domain is a multicast.session idenFifiedI
for servers, and models the performance when servers are ig-an IP multicast group address. The size of the object is
tributed across different networks. In Fig. 3(b), object namé#ibounded. Since session data is real-time, and may be sent

which yield consecutiveD(k) values starting atD(k) = from multiple sources, it is essential for clients and providers
E0020001;¢ were used. As can be seéi,.,.q» exhibits the to determine the correct server (RP) quickly. Otherwise, real-
best performance. time data sent by a host could overflow the local router buffers

Fig. 3(c) and (d) shows the results using consecutive d_@pfore i'_[ is able to identify the correct RP server. Low IaFenc_y
dresses for servers, starting with the arbitrarily chosen P also important to receivers who want to join a session in

address 173.187.132.245. In Fig. 3(d), object names that yi€IPIress.
5 . o _ . One example motivating the low latency requirement is
The algorithm used bygrandom is quite complex. As we will see, it

does not perform significantly better th&H,,...q as a hash function, and is knO_W”_ as the “bursty-source problem” [18], Whe_re a source
not worth describing here. periodically sends a burst of data and then remains silent for
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Fig. 3. Weight functions compared. Thé-axis is the coefficient variable of the number of serviced objects across cluster servers.

a long time. An example is an application which broadcaségldress allocation can be done using a variety of methods, so
its current state once a day. If the source’s router had tfiat object names may be assigned randomly or sequentially,
resolve the correct server via an exchange of network messagése servers are likely to be scattered among many subnets
each time (since the number of sessions may be too largenithin the routing domain. Since these circumstances roughly
maintain mapping state for idle sessions), then every bugsirespond to Fig. 3(a) and (b)¥:..q2 Was adopted as the
could be missed and receivers would never get useful dataveight function of choice in PIMv2.
In this application, the number of possible objects is large
(228 multicast addresses), and all receivers for the same sesdfonVWW Client-Side Proxy Caching

request the same object, causing a significant concentration ofyww usage continues to increase and, hence, popular
requests. The conditions of COfO”ary 1 are thus SatiSﬁEd, a@@#\/ers are ||ke|y to become more and more Congested_ One
the situation is ideal for the use of HRW. solution to this problem is to cache web pages at HTTP proxies
We focus on sparse-mode PIM in particular, since ifg], [4], [24]. Client requests then go through a local proxy
evolution illustrates many of the concepts and goals discussgglver. If the proxy server has the page cached, the page is
in Section Ill. The original description of PIMv1 [2] did notreturned to the client without accessing the remote server.
specify any mapping algorithm for assigning join reques®therwise, the page is retrieved and cached for future use.
to servers. Since replication was not prevented, providevarious studies (e.g., [25] and [26]) have found that a cache
sent session data to all servers in a cluster. This resultedhihrate of up to 50% can be achieved. Thus, since the number
undesirable complexity and resource consumption. of possible objects is large and a significant concentration of
The next step, as the design of PIM evolved, was to specifyeguests exists, the conditions are appropriate for HRW.
static priority scheme as the mapping algorithm. This avoidedPopular WWW browsers such as Netscape Navidator,
replication, reducing complexity and resource consumptioNCSA Mosaic, andlynx , now allow specifying one or
but meant that the liveness of higher priority servers in tHBore proxy servers through which requests for remote objects
cluster had to be tracked, incurring additional complexity. &re sent. A single proxy, however, does not provide any
Finally, PIMv2 adopted our algorithm, HRW, as its mappinéaun tolerance. For a robust deployment, multiple proxies are

algorlthm. The resullt '_S.that the protocol cpmplexﬂy and.StateGNetscape Communications Corporation, Netscape Navigator software.
requirements are significantly lower than in PIMv1. Multicastvailable: HTTP: http://www.netscape.com.
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TABLE Il 50 - I
TRACE SUMMARY Leastlobs — ]
. 45 ¢ Random o "
Traced Item S Value Round-Robin O o
URLSs Requested 186766 ° 40 +
Mean object size 16599 bytes g
Bytes Requested 3.1 Gbytes I 35 ¢
Unique URLs Requested| 93956 S 30
Mean unique object size | 22882 bytes \x\@
Unique Bytes Requested | 2.1 Ghytes 25 | NN\J&\\M‘_@‘_
"""" g
20 . . . . . TRy
required. For example, a single proxy hostname might map to 1 2 5 e B 7 8
multiple IP addresses.
Some criteria must be used by a client to select a pro&if- 4 Hit rates of various allocation schemes.
to which to send a request. We now wish to compare various
mapping algorithms through simulation, using an actual trace 50 ' - - ' ' -
of WWW requests. In the discussion below, we will use the o e o aon S o
term “server” below to refer to the proxy rather than the actual ’
server holding the object. This will allow the terminology to adl
apply to the more general problem. 2
In the following simulations, the objects and object sizes £ ,, |
are taken from the publicly available WWW client-based =T
traces described in [27], where all URL's accessed from 37 >
workstations at Boston University were logged over a period 35t
of five months. Since we are interested in the performance
of a proxy scheme, we use only those URL'’s which referred
to remote sites (not within thbu.edu domain) and were 30120 200 300 400 500 600 700 800
not found in the browser's own cache. Table Il shows the Total Cache Space (MB)

characterization of the resulting data set used for simulati

Note that about 50% of the l?RLS requested were umqﬁ 5. Hit rates of various total cache sizes under HRW.

giving an upper bound on the cache hit rate of around 50%,

which agrees with the bound observed by [25] and [26].  allocation schemes, however, since the more servers there are,

Since a unique object nankecan, in general, have arbitrarythe less likely it is that a previous request for the same object
length, and we wish to obtain a digest with which we can dgas seen by the same server. Their hit rate curves were similar
32-bit arithmetic, our simulation defined(k) to be the 31-bit since each assigns requests independently of where objects are
digest of the object name obtained by computing its CRC-32ched. We observe that, by six servers, HRW'’s hit rate is
[28] checksum and discarding the most significant bit. double the hit rate of the other schemes.

1) Simulation: Our simulator implemented HRW, a round- In Fig. 5, we compare the effects of using HRW with
robin scheme, and a random allocation scheme. In a fourtiultiple 100-MB servers against those of combining all of the
scheme, similar to least-loaded allocation, a request was sawiilable cache space into a single server (in which case all
to the server with the least number of objects currently beimgapping schemes are equivalent). As can be seen, when HRW
serviced (with ties broken randomly). A fifth alternative, whiclis used, adding another 100-MB server is indeed comparable
fails to provide robustness, is to add more cache spacettoadding another 100 MB of space to a single server. HRW
a single server rather than adding another server; thus, with multiple servers provides better availability, however. In
available cache space is combined at a single server. other words, other schemes give a hit rate that depends on the

We first preloaded server caches by simulating the cacheche size omrachserver, whereas the HRW hit rate depends
with 60000 requests and a least recently used (LRU) replacsthetotal cache space available at all servers combined. The
ment strategy (by which point, the caches were full). We thermall difference observed between the two curves in Fig. 5 is
computed statistics over the next 100 000 requests. In additidng to the fact that only whole objects are cached. That is,
we made the simplifying assumptions that all objects wemhen there is enough space at all servers combined to hold
cacheable, and that no objects were invalidated during the object, but not at any single server, HRW must evict an
lifetime of the simulation (160000 requests). object from a cache.

Fig. 4 shows how the hit rate varied with the number of Fig. 6 shows the time that the server took to retrieve the
servers under each allocation scheme using 100-MB cachesjuested object (which was zero if the object was cached). By
The hit rate of HRW increased, approaching the maximuoomparison, Glassman [26] found the average response time
bound of 50%, since the effective cache size increases linearlyiss seen by a client for an uncached page to be between
with the number of servers. The hit rate decreased for oth&f9 s, compared withygr =1.5 s for a cached page, using a



THALER AND RAVISHANKAR: USING NAME-BASED MAPPINGS 13

4.2 T T T T T 55 v T T T T
§ %— - : | } " ;
4r ~—:vJ»/:;::’@";""':"‘N‘g_ﬂ:ﬂT:: e 50 |\
o) @g \\ HRW i
g ss[ & HRW —+— 45+ N\ LeastJobs - |
= -7 Leastlobs —x— N Random -6
LeastJobs - W r
g Random -0 ) - Round-Robin -t
g 36} , | S 40| -
2 Round-Robin & o N
3 I W
o 347 1 I 354 "
g S TE
o —
Q 32 r — | 30 - .
> e -
& — B g
3r \|\\\\‘ 25 o \T
2.8 1 1 1 L 1 1 20 1 1 1 1 1 L
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
# Servers # Servers
Fig. 6. Latency of various allocation schemes. (@
30 T T T T . .
30 HRW | ,‘$
o5 | LeastJobs - ) ,i,_?,,,,_‘,f=/-—:§3"’ 1
s Random o gV@
25 ¢ e Round-Robin -8 A
= 20 | - _
[} c P
£ S
o 207 ] =
8 ' g 15y ]
g 15t ] 3
9 2 10 J
&
(%. 10 + i 5 )
® /
o 1 O% i | : P et o~ e A
0 ‘ . . . L 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 # Servers
# Servers )
Fig. 7. Speed improvement of HRW over random. Fig. 8. Time-based cache performance.

digital web relay. Usingrmrr = 1.5 andviss = 7.5, Fig. 7 yajue function and we showed that this model adequately
shows the expected speed improvement as seen by the clighfracterizes the behavior of typical mapping functions. Typ-
The line shown is based on the ratio of HRW's latency to thity| mapping functions permit replication, resulting in longer
seen by random. We expect the improvement to be much Mgsncies and increased space requirements in the domains
pronounced for sites with low bandwidth connectivity to thgya¢ we consider. We argued that reducing replication would
outside world, such as New Zealand [29], sinagiss Wil gecrease latency and space requirements and would increase
rise while 7grr remains constant. hit rates at cluster servers. In combination with the need
_ Fig. 8 shows the hit rate and cache space used whengp 5 clients to have the same view of which objects map
limit exists on cache space. Again, since we assume that 80\yhich servers, these considerations motivated the need
quects are mva_lldgted during t_he lifetime of the S|mulat|on,_n|%r stateless mappings from objects to servers. We described
time-based expirations were simulated and, hence, no objeglsioys desirable properties of stateless mappings, including
were evicted from any cache. As shown, hash allocation a0 pajancing, minimal disruption as the set of active servers
achieves a much higher hit rate and lower space requirementgg|yes, and efficient implementation. We then described an
the number pf servers increases, where the space requwen&%}grithm (HRW) which meets those needs using a purely local
shown is ratio of the total amount of cache space used at ision on the part of the client.
end of the simulation, over the combined size of all objects We compared HRW to traditional schemes for assigning
requested. ) ) . requests to servers, and showed that in distributed caching,

In summary, WWW clients can ach{eve faster response t"ﬁﬂging a stateless mapping allows a higher cache hit rate for
from clusters of proxy servers by using HRW' For exampl‘f‘lxed—size caches and a lower space requirement for variable-
when a proxy hostname resolves to muItlipIe IP address Se caches. We also showed that HRW is very useful in
HRW (.:OUId be_ used to_ choose an ?‘ppropf'ate address ra Hi-time producer—consumer domains, where it is valuable
than simply using the first address in the list. for clients to independently deduce object—server mappings,
and that HRW allows them to minimize overhead by relying
on purely local decisions.

We began with a model that views the mapping of requestsFinally, we provided empirical evidence that our algorithm
to servers in a cluster as a minimization operation on gives faster service times than traditional allocation schemes.

VIIl. CONCLUSIONS
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HRW is most suitable for domains in which there are a larges]
number of requestable objects, the request rate is high, there
is a high probability that a requested object will be request
again, and the load due to a single object can be handled by
a single server. 18]

HRW has already been applied to multicast routing, whe#e
it has been recently incorporated by both the PIM [17] and
CBT [30] protocols. HRW is also applicable to the Www 2]
WWW clients could improve response time by using HRVyo]
to select servers in a cluster rather than by simply using the
order presented by DNS. This improvement would be mo
significant at sites with low-bandwidth connectivity to thd22]
Internet using a cluster of proxy servers for outbound reques&]
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