Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
682e314
feat: Add dbt integration for importing models as FeatureViews (#3335)
YassinNouh21 Jan 10, 2026
d20962d
fix: Address mypy and ruff lint errors in dbt integration
YassinNouh21 Jan 10, 2026
354f921
fix: Address ruff lint errors in dbt unit tests
YassinNouh21 Jan 10, 2026
5ca317c
style: Format dbt files with ruff
YassinNouh21 Jan 10, 2026
a301f83
fix: Remove unused dbt-artifacts-parser import and fix enum import
YassinNouh21 Jan 10, 2026
460810c
feat: Use dbt-artifacts-parser for typed manifest parsing
YassinNouh21 Jan 10, 2026
b398368
fix: Add graceful fallback for dbt-artifacts-parser validation errors
YassinNouh21 Jan 10, 2026
2f777ff
fix: Skip dbt tests when dbt-artifacts-parser is not installed
YassinNouh21 Jan 10, 2026
86fb951
refactor: Simplify parser to rely solely on dbt-artifacts-parser
YassinNouh21 Jan 10, 2026
a17b50c
ci: Add dbt-artifacts-parser to unit test dependencies
YassinNouh21 Jan 10, 2026
55174a5
fix: Address Copilot code review comments for dbt integration
YassinNouh21 Jan 10, 2026
e4ba00a
fix: Only add ellipsis to truncated descriptions
YassinNouh21 Jan 10, 2026
01730a8
style: Format dbt files with ruff
YassinNouh21 Jan 10, 2026
8a06b83
fix: Convert doctest examples to code blocks to avoid CI failures
YassinNouh21 Jan 10, 2026
fb40e93
fix: Add dbt-artifacts-parser to feast[ci] and update requirements
YassinNouh21 Jan 11, 2026
53932ff
docs: Add dbt integration documentation
YassinNouh21 Jan 11, 2026
972fc96
docs: Add alpha warning to dbt integration documentation
YassinNouh21 Jan 14, 2026
b2901f4
fix: Add dbt-artifacts-parser to CI_REQUIRED dependencies
YassinNouh21 Jan 14, 2026
fe253c1
fix: Add defensive Array.base_type handling with logging
YassinNouh21 Jan 14, 2026
ed2c291
docs: Add comment explaining ImageBytes/PdfBytes exclusion
YassinNouh21 Jan 14, 2026
7a50c73
fix: Move imports to top of file to resolve linter errors
YassinNouh21 Jan 16, 2026
c4ad283
Merge branch 'master' into feat/dbt-feast-integration-3335-clean
franciscojavierarceo Jan 16, 2026
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@
* [Adding a custom provider](how-to-guides/customizing-feast/creating-a-custom-provider.md)
* [Adding or reusing tests](how-to-guides/adding-or-reusing-tests.md)
* [Starting Feast servers in TLS(SSL) Mode](how-to-guides/starting-feast-servers-tls-mode.md)
* [Importing Features from dbt](how-to-guides/dbt-integration.md)

## Reference

Expand Down
381 changes: 381 additions & 0 deletions docs/how-to-guides/dbt-integration.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,381 @@
# Importing Features from dbt

{% hint style="warning" %}
**Alpha Feature**: The dbt integration is currently in early development and subject to change.

**Current Limitations**:
- Supported data sources: BigQuery, Snowflake, and File-based sources only
- Single entity per model
- Manual entity column specification required

Breaking changes may occur in future releases.
{% endhint %}

This guide explains how to use Feast's dbt integration to automatically import dbt models as Feast FeatureViews. This enables you to leverage your existing dbt transformations as feature definitions without manual duplication.

## Overview

[dbt (data build tool)](https://www.getdbt.com/) is a popular tool for transforming data in your warehouse. Many teams already use dbt to create feature tables. Feast's dbt integration allows you to:

- **Discover** dbt models tagged for feature engineering
- **Import** model metadata (columns, types, descriptions) as Feast objects
- **Generate** Python code for Entity, DataSource, and FeatureView definitions

This eliminates the need to manually define Feast objects that mirror your dbt models.

## Prerequisites

- A dbt project with compiled artifacts (`target/manifest.json`)
- Feast installed with dbt support:

```bash
pip install 'feast[dbt]'
```

Or install the parser directly:

```bash
pip install dbt-artifacts-parser
```

## Quick Start

### 1. Tag your dbt models

In your dbt project, add a `feast` tag to models you want to import:

{% code title="models/driver_features.sql" %}
```sql
{{ config(
materialized='table',
tags=['feast']
) }}

SELECT
driver_id,
event_timestamp,
avg_rating,
total_trips,
is_active
FROM {{ ref('stg_drivers') }}
```
{% endcode %}

### 2. Define column types in schema.yml

Feast uses column metadata from your `schema.yml` to determine feature types:

{% code title="models/schema.yml" %}
```yaml
version: 2
models:
- name: driver_features
description: "Driver aggregated features for ML models"
columns:
- name: driver_id
description: "Unique driver identifier"
data_type: STRING
- name: event_timestamp
description: "Feature timestamp"
data_type: TIMESTAMP
- name: avg_rating
description: "Average driver rating"
data_type: FLOAT64
- name: total_trips
description: "Total completed trips"
data_type: INT64
- name: is_active
description: "Whether driver is currently active"
data_type: BOOLEAN
```
{% endcode %}

### 3. Compile your dbt project

```bash
cd your_dbt_project
dbt compile
```

This generates `target/manifest.json` which Feast will read.

### 4. List available models

Use the Feast CLI to discover tagged models:

```bash
feast dbt list target/manifest.json --tag-filter feast
```

Output:
```
Found 1 model(s) with tag 'feast':

driver_features
Description: Driver aggregated features for ML models
Columns: driver_id, event_timestamp, avg_rating, total_trips, is_active
Tags: feast
```

### 5. Import models as Feast definitions

Generate a Python file with Feast object definitions:

```bash
feast dbt import target/manifest.json \
--entity-column driver_id \

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what happens when a user has multiple dbt models with multiple entities? ideally we can go from some sort of metadata tag to autogenerating the Entity.

--data-source-type bigquery \
--tag-filter feast \
--output features/driver_features.py
```

This generates:

{% code title="features/driver_features.py" %}
```python
"""
Feast feature definitions generated from dbt models.

Source: target/manifest.json
Project: my_dbt_project
Generated by: feast dbt import
"""

from datetime import timedelta

from feast import Entity, FeatureView, Field
from feast.types import Bool, Float64, Int64
from feast.infra.offline_stores.bigquery_source import BigQuerySource


# Entities
driver_id = Entity(
name="driver_id",
join_keys=["driver_id"],
description="Entity key for dbt models",
tags={'source': 'dbt'},
)


# Data Sources
driver_features_source = BigQuerySource(
name="driver_features_source",
table="my_project.my_dataset.driver_features",
timestamp_field="event_timestamp",
description="Driver aggregated features for ML models",
tags={'dbt.model': 'driver_features', 'dbt.tag.feast': 'true'},
)


# Feature Views
driver_features_fv = FeatureView(
name="driver_features",
entities=[driver_id],
ttl=timedelta(days=1),
schema=[
Field(name="avg_rating", dtype=Float64, description="Average driver rating"),
Field(name="total_trips", dtype=Int64, description="Total completed trips"),
Field(name="is_active", dtype=Bool, description="Whether driver is currently active"),
],
online=True,
source=driver_features_source,
description="Driver aggregated features for ML models",
tags={'dbt.model': 'driver_features', 'dbt.tag.feast': 'true'},
)
```
{% endcode %}

## CLI Reference

### `feast dbt list`

Discover dbt models available for import.

```bash
feast dbt list <manifest_path> [OPTIONS]
```

**Arguments:**
- `manifest_path`: Path to dbt's `manifest.json` file

**Options:**
- `--tag-filter`, `-t`: Filter models by dbt tag (e.g., `feast`)
- `--model`, `-m`: Filter to specific model name(s)

### `feast dbt import`

Import dbt models as Feast object definitions.

```bash
feast dbt import <manifest_path> [OPTIONS]
```

**Arguments:**
- `manifest_path`: Path to dbt's `manifest.json` file

**Options:**

| Option | Description | Default |
|--------|-------------|---------|
| `--entity-column`, `-e` | Column to use as entity key | (required) |
| `--data-source-type`, `-d` | Data source type: `bigquery`, `snowflake`, `file` | `bigquery` |
| `--tag-filter`, `-t` | Filter models by dbt tag | None |
| `--model`, `-m` | Import specific model(s) only | None |
| `--timestamp-field` | Timestamp column name | `event_timestamp` |
| `--ttl-days` | Feature TTL in days | `1` |
| `--exclude-columns` | Columns to exclude from features | None |
| `--no-online` | Disable online serving | `False` |
| `--output`, `-o` | Output Python file path | None (stdout) |
| `--dry-run` | Preview without generating code | `False` |

## Type Mapping

Feast automatically maps dbt/warehouse column types to Feast types:

| dbt/SQL Type | Feast Type |
|--------------|------------|
| `STRING`, `VARCHAR`, `TEXT` | `String` |
| `INT`, `INTEGER`, `BIGINT` | `Int64` |
| `SMALLINT`, `TINYINT` | `Int32` |
| `FLOAT`, `REAL` | `Float32` |
| `DOUBLE`, `FLOAT64` | `Float64` |
| `BOOLEAN`, `BOOL` | `Bool` |
| `TIMESTAMP`, `DATETIME` | `UnixTimestamp` |
| `BYTES`, `BINARY` | `Bytes` |
| `ARRAY<type>` | `Array(type)` |

Snowflake `NUMBER(precision, scale)` types are handled specially:
- Scale > 0: `Float64`
- Precision <= 9: `Int32`
- Precision <= 18: `Int64`
- Precision > 18: `Float64`

## Data Source Configuration

### BigQuery

```bash
feast dbt import manifest.json -e user_id -d bigquery -o features.py
```

Generates `BigQuerySource` with the full table path from dbt metadata:
```python
BigQuerySource(
table="project.dataset.table_name",
...
)
```

### Snowflake

```bash
feast dbt import manifest.json -e user_id -d snowflake -o features.py
```

Generates `SnowflakeSource` with database, schema, and table:
```python
SnowflakeSource(
database="MY_DB",
schema="MY_SCHEMA",
table="TABLE_NAME",
...
)
```

### File

```bash
feast dbt import manifest.json -e user_id -d file -o features.py
```

Generates `FileSource` with a placeholder path:
```python
FileSource(
path="/data/table_name.parquet",
...
)
```

{% hint style="info" %}
For file sources, update the generated path to point to your actual data files.
{% endhint %}

## Best Practices

### 1. Use consistent tagging

Create a standard tagging convention in your dbt project:

```yaml
# dbt_project.yml
models:
my_project:
features:
+tags: ['feast'] # All models in features/ get the feast tag
```

### 2. Document your columns

Column descriptions from `schema.yml` are preserved in the generated Feast definitions, making your feature catalog self-documenting.

### 3. Review before committing

Use `--dry-run` to preview what will be generated:

```bash
feast dbt import manifest.json -e user_id -d bigquery --dry-run
```

### 4. Version control generated code

Commit the generated Python files to your repository. This allows you to:
- Track changes to feature definitions over time
- Review dbt-to-Feast mapping in pull requests
- Customize generated code if needed

### 5. Integrate with CI/CD

Add dbt import to your CI pipeline:

```yaml
# .github/workflows/features.yml
- name: Compile dbt
run: dbt compile

- name: Generate Feast definitions
run: |
feast dbt import target/manifest.json \
-e user_id -d bigquery -t feast \
-o feature_repo/features.py

- name: Apply Feast changes
run: feast apply
```

## Limitations

- **Single entity support**: Currently supports one entity column per import. For multi-entity models, run multiple imports or manually adjust the generated code.
- **No incremental updates**: Each import generates a complete file. Use version control to track changes.
- **Column types required**: Models without `data_type` in schema.yml default to `String` type.

## Troubleshooting

### "manifest.json not found"

Run `dbt compile` or `dbt run` first to generate the manifest file.

### "No models found with tag"

Check that your models have the correct tag in their config:

```sql
{{ config(tags=['feast']) }}
```

### "Missing entity column"

Ensure your dbt model includes the entity column specified with `--entity-column`. Models missing this column are skipped with a warning.

### "Missing timestamp column"

By default, Feast looks for `event_timestamp`. Use `--timestamp-field` to specify a different column name.
Loading
Loading